Random Latin square graphs
نویسندگان
چکیده
In this paper we introduce new models of random graphs, arising from Latin squares which include random Cayley graphs as a special case. We investigate some properties of these graphs including their clique, independence and chromatic numbers, their expansion properties as well as their connectivity and Hamiltonicity. The results obtained are compared with other models of random graphs and several similarities and differences are pointed out. For many properties our results for the general case are as strong as the known results for random Cayley graphs and sometimes improve the previously best results for the Cayley case.
منابع مشابه
On chromatic number of Latin square graphs
The chromatic number of a Latin square is the least number of partial transversals which cover its cells. This is just the chromatic number of its associated Latin square graph. Although Latin square graphs have been widely studied as strongly regular graphs, their chromatic numbers appear to be unexplored. We determine the chromatic number of a circulant Latin square, and find bounds for some ...
متن کاملA class of orthogonal latin square graphs
An orthogonal latin square graph is a graph whose vertices are latin squares of the same order, adjacency being synonymous with orthogonality. We are interested in orthogonal latin square graphs in which each square is orthogonal to the Cayley table M of a group G and is obtained from M by permuting columns. These permutations, regarded as permutations of G, are orthomorphisms of G and the grap...
متن کاملNew negative Latin square type partial difference sets in nonelementary abelian 2-groups and 3-groups
A partial difference set having parameters (n2, r(n− 1), n+ r2 − 3r, r2 − r) is called a Latin square type partial difference set, while a partial difference set having parameters (n2, r(n+1),−n+r2+3r, r2+r) is called a negative Latin square type partial difference set. Nearly all known constructions of negative Latin square partial difference sets are in elementary abelian groups. In this pape...
متن کاملUsing Latin Squares to Color Split Graphs
An edge-coloring of a graph is an assignment of colors to its edges such that no adjacent edges have the same color. A split graph is a graph whose vertex set admits a partition into a stable set and a clique. Split graphs have been introduced by Földes and Hammer [4] and it is a well-studied class of graphs. However, the problem of deciding the chromatic index of any split graph remains unsolv...
متن کاملStatistical Approaches in Analysis of Variance: from Random Arrangements to Latin Square Experimental Design
Background: The choices of experimental design as well as of statistical analysis are of huge importance in field experiments. These are necessary to be correctly in order to obtain the best possible precision of the results. The random arrangements, randomized blocks and Latin square designs were reviewed and analyzed from the statistical perspective of error analysis. Material and Method: Ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 41 شماره
صفحات -
تاریخ انتشار 2012